[tinéraire entre deux stations du métro parisien
Kim Antunez et Alain Quartier-la-Tente

07/01/2020 - 15h30 a 15h45

@ IP PARIS
Table des matieres
1 Introduction 1
2 Le programme 2
2.1 Priseenmaino e e e e 2
2.2 Démonstration 2
3 Description des données 6
3.1 Description des données a dispositiono oL 6
3.2 Difficultés et solutions adoptéeso 6
4 Description des classes 8
4.1 Classes liées au réseau de métro parisien Lo 8
4.2 Classes liées a l'algorithme du plus court chemin 8
4.3 Classe faisant le lien entre I'algorithme et les données 9
4.4 Classe générant 'Interface Homme-Machine 10
5 L’algorithme de Dijkstra 10
6 Pour conclure et aller plus loin 13
7 Lignes de métro 14
1 Introduction

Ce rapport décrit le projet C++ de Kim Antunez et d’Alain Quartier-la-Tente (Ensae, 2A) dont l'objectif est
de permettre a 'utilisateur d’obtenir un itinéraire entre deux stations de métro selon deux critéres : le plus
court chemin ou le chemin avec le moins de correspondances. L’ensemble des données et des codes utilisés sont
disponibles sous https://github.com/AQLT /Metro_ Cpp, la section 2 décrivant comment utiliser application.
Les données utilisées sont les données du métro parisien fournies par la RATP (section 3), 'implémentation
des classes est décrite dans la section 4, I'algorithme utilisé pour calculer les chemins est ’algorithme de
Dijkstra (section 5). Enfin, une conclusion et quelques pistes d’amélioration sont décrites dans la partie 6.

Pour mieux se retrouver dans le réseau parisien, et surtout tester la validité de I’algorithme, le plan de
I’ensemble des lignes a été rajouté dans la section 7.

https://github.com/AQLT/Metro_Cpp

2 Le programme

2.1 Prise en main

Afin de s’assurer que le programme tourne bien sur votre ordinateur, veillez a effectuer les vérifications
suivantes dans le fichier main.cpp :

1. Changer le répertoire de travail (project_directory) : il doit s’agir du lien vers le dossier contenant
notamment le dossier Data Projet. Ainsi, si Parchive a été dézippée sous D:/, project_directory
doit étre égale a D: /Metro_Cpp.

2. Choisir si 'on veut mettre de la couleur dans Uinterface (booléen activerCouleur).

&Attention : la coloration de la console utilise la librairie windows.h et n’est donc compatible
qu’avec les ordinateurs sous Windows. Si vous utilisez un autre systéme d’exploitation, ouvrez le fichier
IHM.h et supprimer la ligne 6 contenant #include <windows.h>.

3. Lancer le programme est se laisser guider.

int main()

string project_directory = "W:/Documents/Cplusplus/Proisk/BreiskC":

NARARRANRARARANARS | ARARNANANK:

Changer ces deux variables
et éventuellement le fichier
IHM.h si on n’est pas sous
Windows.

bool activerCouleur = true;

IHM menu (activerCouleur);
Metro metro;

metro.importerDonnees (project_directory);
Graphe graphe (project_directory); Kkée un QRisk
vector<string> identifiants_depart_arrivee = menu.choixDepartArrivee (metro);

KANANRRNRAR: FARAR

wn Fon

bool minChangement = menu.choixTypeltineraire():

o W R

= = SR RARNRARNRARAIRRANARNAR: AR

Itineraire itineraire_ sortie(graphe.dijkstras(identifiants_depart_arrivee[0],
identifiants_depart_arrivee[l],
minChangement) ,
metro) ;
menu.afficherItineraire (itineraire_sortie);

2.2 Démonstration

Nous cherchons ici & calculer itinéraire le plus court entre la station de métro Gabriel-Péri (sur la ligne
13) et la station Chateau de Vincennes (sur la ligne 1). Le résultat (critére du plus court chemin et du
moins de correspondances) est illustré en figure 1.

Pour cela, il suffit de se laisser guider par le menu en indiquant tout d’abord dans la console le numéro (parfois
suivi de “B” pour les lignes bis) de la ligne de la station de départ, puis le code du menu qui correspond au
nom de la station. Il faut ensuite refaire les mémes actions pour le choix de la station d’arrivée.

e de depart parmi les lignes
, 9, 10, 11, 12, 13

Choisissez votre arret de depart

0 : Asni ennevilli Les Courtilles
de Saint-Denis

: Carre
: Champs-E1
: 1lon Mon

: Mairie de Saint-OQuen
Malakoff-Plateau de Vanv
Malakoff-Rue Etienne Dole

: Miromesnil

- Porte de Paris
Saint-Denis-Unive
Saint-Francois
Saint-Lazare

t de depart
briel-Peri)

e parmi les lignes
9, 10, 11, 12, 13

Choisissez votre arret d'arrivee

Argentine
Bastille

es-Clemenceau
Etoile

Timatation)

Louvre-Rivoli
Nation
Roy (Musee du Louvre)
de Neuilly
Maillot

Saint-Ma
: Saint-Paul
: Tuileries

Arret d'arri
(Chateau de

Voulez-vous 1"itine

0 : Le plus rapide

1 : Avec le moins de changements
0

suivantes
et 14

Il est ensuite possible de choisir le type d’itinéraire souhaité. Nous choisissons ici le chemin le plus
rapide.

La console nous indique donc le chemin le plus court.

- Votre itineraire -

riel-Peri prendre la ligne i ion jusqu a 1'arr
int-Lazare () is prendre la ligne direction jusqu'
dre Ta Tigne 1 direction
6 arrets)

Temps de trajet minimum : 36 min

A Gabriel-Péri, prendre la ligne 13 direction Chatillon-Montrouge jusqu’a l'arrét Saint-Lazare

(7 arréts), puis prendre la ligne 14 direction Olympiades jusqu’a larrét Gare de Lyon (4 arréts),

puis prendre la ligne 1 direction Chdteau de Vincennes jusqu’a 'arrét Chdteau de Vincennes
(15 arréts).

29

Si l'on change le type d’itinéraire en choisissant le chemin avec le minimum de correspondances, on
obtient 'itinéraire suivant.

Voulez-vous 1'itineraire :
Le plus rapide ?
: Avec le moins de changements 7

Ta ligne
15 arrets)

Temps de trajet minimum : 40 min

Voulez-vous : .
0 : Quitter 1'appli
: er un nouve

A Gabriel-Péri, prendre la ligne 13 direction Chatillon-Montrouge jusqu’a Uarrét Champs-
Elysées-Clémenceau (9 arréts), puis prendre la ligne 1 direction Chdteau de Vincennes jusqu’d
Uarrét Chateau de Vincennes (15 arréts).

29

- - Aubenliiers Y o — mMiuy- Giaye
‘ int-Denis =N o, a1 Rougemont
Les Agnettes Carrefour WPorte de Paris* ®U ® EEED
Pleyel

La Courneuve q
briel Péri Stade de France 8Mai 1945 7 (Q¥oriceachitre Snne
Saint-Ouen -) \Saint-Denis R Yo2roncy - Avenit
Mairie de Saint-Ouen* La Plaine Fort N, ,HOpital Avicenne
" Mairie Stade de France dAubenvilliers "N Gaton ovlaud LAy
Asniéres Clichy* L Aubervilliers N, Escadrile Normandie Niémen
sur-Seine — Garibaldi R o A Eg’p':”a,,e* Auber\nlllers KX : Ferme Bondy@
ibération :
oot . Bobigny
i QO Forroupus wareciin,/ s O
is. i [nett Angél . Diane Cblette X g - oJean Rostand
40 B o P SN B o - Sy
LEE arcadet obigny- Pantin
a%{m etk Lamarck Jof rin* Poissonniers’ Dorrnoy* la Vlllette*/ Raymond Queneau Ponl‘.
lle France Caulaincourt’

Paks Corentin Cariou p*2eine BV Chelles

i i g Chéteau ink Petit s Gournay
Zulzeh MlchelrE‘t I:Aorte A Atsn |Léres Y. Fourche Rouge Crimée* Eglise de Pantin Nmsy
le Champer arguerite Long (¥*)
Pereire . Barbes Riquet
Pereire - Levallois 0=0)) Blanche i Rochechouart: La Chapelle) o Ourcg Porte \ Hoche 1O
Stalingrad™® de Panti Butte du Nois, -Ie-Sec@@
- — - — . (i Chapeau Rouge 4
Romek1ace \ . Laumiére S Pré
Clichy ré X Tournan
Malesherbes Gare du Nord = 7 y) Jaures* Danube “st-Gervais
Lidge Saint-Georges ® l . Magenta QIé?uis Bolivar
anc
Monceau*® Trinité Chéteau O Botzaris
Estlenne Notre-Dame Landon* Colonel ittes
Courcelles, — d'Orves _ de-Lorette® Poissonniére Gare neen Fabien* Chaumont
Gare Saint-Lazare N o dellEsE P 0 — =| 30 Porte des Lilas
Haussmann . . Pyrénées Jourdain Place Télégraph
Ternes saint-Lazare* () % Saint-Lazare Le Peletier Chiteau J Belleville des Fatesk
& d'Eau acques
int- ind Chaussée Bonsergent int 2 Adienne
S Saint-Augusting dAntin _ Richelieu Strasbourg £ AR Saint-Fargeau =Adiern
6 , s Miromesnil. Y/ La Fayettg Drouot® Saint-Denis Goncourt*)
SaintPhili Hawre y & 2 = Severine
in du-;lloptﬁz gumartin’ k s Grands Bonne Ménilmontant Pelleport
N /4 Opéra Boulevards || | Nouvelle Temple République*
léber* % Auber Oberkampf* -
Franklm X QuaLs SShiembre . Réaumur | i @ Parmentier Lachaise () 3o Q
Roosevelt O Madelejine* Bourse Sentier [§ |Sébastopol CY) eGallieni
- " ; (Filles Rue Gambetta* " Porte
Etienne du Calvaire Saint-Maur* de Bagnolet
Maramey /- Gamesty Marcel |}l chatelet . Philippe - .
O Clemenceau P Concorde Paﬂ,? e Royal Les Halles* QW Les Halles /Rambuteau® Stm -Sébastien Saint-Ambroise Auguste* ol o deMontreuil
3na our 3 = de Miribel
: ‘ TUIl! ". i pteildelile Eé:ﬂ:)antd Voltaire* P Croix de Chavaux*
Pont Pont Neuf Chatele i SENCE g
del’Alma Invalides* Musée d'Orsay Bréguet Dumas e Robespierre
O o Ko p EE Chaonne Maraichers Porte de Montreuil
La Tour Assemblée Nationale B =3
Maub: | =l Ruel Marne-la-Vallée*
aubourg |) des Boulets :
nval Parcs Disneyland ‘¢
< o : Notre-Dame Rollin¥
“hamp de Mars Varenne Saint \ Ledru-Rollin
Tour Eif el / u Germain Sully* Faidherbe / ® Vincennes
3ir-Hakeim Ecole des-Prés Cluny Morland Chaligny
Militaire i La Sorbonne ation
I
. f i Maubert é
Francois Seévres Mabillon Odéon* i Porte de andé*
SR La Motte xawegr* Babylone*Q) : Mutualité Euilly- Dlderot Vihcennes* 1, Boissy-St-Léger*
Picquet S Saint-Sulpice Cardinal Quai de icpus, = Do
Avenue OGrenelle* Renne) Lusembourg Lemoine la Rapée Montgallet Béralng,
Jile Zola Chateau
. are . 1 -
St-Placide™] Bel-Airt | de Vincennes
Cambronne Ségur ,ODurock : Notre-Dame Jussieu* JeLyon N1 o
Charles Montparnasse | des-Champs Place d'Austerlit. Daumesnil Michel
Michels* ¢ Commerce - X Monge
s 5 Falguiére .. Bienventi Vavin Port-Royal : 10
én Lecourbe Bensi)ler tonk
Félix Faure Pasteur® Edgar A aubenton
. Gare[=] Quinet* o EBoriyus Les

FIGURE 1: Itinéraires de Gabriel-Péri a Chateau de Vincennes
Note de lecture : Le chemin le plus court est représenté en rose et celui avec le minimum de changements en bleu.

3 Description des données

3.1 Description des données a disposition

Toutes les données utilisées dans ce projet sont issues de la RATP, plus précisément de la base
offre-transport-de-la-ratp-format-gtfs (https://dataratp.opendatasoft.com/explore/dataset/offre-
transport-de-la-ratp-format-gtfs/information/). Ces données sont au format General Transit Feed Specification
(GTFS) qui est un format standardisé pour diffuser des données relatives aux réseaux de transport en
commun (horaires, informations géographiques, etc.).

Deux archives de données de la RATP sont mises a disposition :

— Une archive avec des fichiers GTFS répartis par lignes ;

— Une archive avec des fichiers GTFS pour 'ensemble du réseau (métro, bus, tram et RER).

C’est la premiere archive que nous avons utilisée. En effet, nous restreignons notre étude aux lignes de métro
uniquement. Nous avons stocké les données utilisées ici : https://github.com/AQLT /Metro_ Cpp/tree/master/
Data.

Chaque ligne de métro est associée a un dossier qui contient des données stockées dans différents fichiers :

1. routes.txt : définit les itinéraires des transports en commun — données utilisées avec le fichier
trips.txt pour identifier 'ordre de passage a chaque arrét pour les lignes aller et retour.

2. stops.txt : définit 'ensemble des arréts ou les usagers peuvent monter ou descendre, avec le nom de
l’arrét, I’adresse et les coordonnées GPS — données utilisées dans ce projet pour définir ’ensemble
des arréts.

3. stop_times.txt : définit, pour chaque trajet et pour chaque arrét, les heures d’arrivée et de départ
du métro — données utilisées avec le fichier trip.txt pour connaitre le temps de trajet entre deux
stations d’'une méme ligne.

4. transfers.txt : définit les regles de liaison aux poles de correspondance entre des itinéraires —
données utilisées dans ce projet pour connaitre les correspondances et les temps de correspondance
entre les lignes.

5. trips.txt : définit 'ensemble des trajets pour chaque ligne (i.e. : tous les trajets prévus dans la
journée) — données utilisées avec le fichier routes.txt et stop_times.txt pour identifier pour
chaque ligne 'ordre de passage et le temps de trajet entre chaque arrét .

6. calendar_dates.txt : définit les exceptions pour les services définis dans le fichier calendar.txt —
données non utilisées dans ce projet.

7. calendar.txt : définit les dates auxquelles le service est disponible pour des itinéraires spécifiques
selon un calendrier hebdomadaire. Ce fichier spécifie les dates de début et de fin du service, ainsi que
les jours de la semaine ou le service est disponible — données non utilisées dans ce projet.

8. agency.txt : définit une ou plusieurs agences de transports publics dont les services sont représentés
dans ’ensemble de données — données non utilisées dans ce projet.

Plus d’informations sur les données GTFS sont disponibles sur le site de Google : https://developers.google.
com/transit/gtfs/reference/.

3.2 Difficultés et solutions adoptées

Chaque arrét est défini par un identifiant unique. Cet identifiant est différent pour chaque ligne et pour chaque
route (aller et retour). Certains itinéraires étaient donc impossibles a calculer avec I'utilisation de ces seules
données brutes. Par exemple, si 'on est a 'arrét de métro Gaité sur la ligne 13 direction Chatillon-Montrouge
on ne peut pas rejoindre 'arrét Montparnasse car la ligne est orientée dans la “mauvaise direction”.

1. Dans ce projet nous ne prenons pas en compte I’heure & laquelle la recherche d’itinéraire a été faite : pour chaque “route”
un seul “trip” a donc été utilisé.

https://dataratp.opendatasoft.com/explore/dataset/offre-transport-de-la-ratp-format-gtfs/information/
https://dataratp.opendatasoft.com/explore/dataset/offre-transport-de-la-ratp-format-gtfs/information/
https://github.com/AQLT/Metro_Cpp/tree/master/Data
https://github.com/AQLT/Metro_Cpp/tree/master/Data
https://developers.google.com/transit/gtfs/reference/
https://developers.google.com/transit/gtfs/reference/

— Solution adoptée : ajouter un temps de transfert égal & 0 permettant de passer d’un arrét d’une ligne
aller & ce méme arrét (méme nom) de la ligne retour, et inversement. Ainsi, le temps de transfert est nul pour
passer de l'arrét de métro Gaité sur la ligne 13 direction Chatillon-Montrouge a I'arrét de métro Gaité sur la
ligne 13 direction Saint-Denis/Les Courtilles.

Toutefois, méme avec cette correction des données, des limites concernant les temps de transfert subsistent.
Par exemple, pour réaliser certains itinéraires, il est nécessaire de changer de direction tout en restant sur la
méme ligne (par exemple sur la ligne 13 passer de Guy Moéquet & Brochant il faut aller jusqu’a Parrét La
Fourche et changer de direction).

Puisque nous avons fait le choix de ne pas tenir compte du temps d’attente moyen d’un métro, le temps de
trajet prévu pour chaque itinéraire est sous-estimé.

Cette facon de numéroter les arréts implique que certains arréts ne sont associés qu’a une ligne (aller ou
retour) alors que d’autres sont associés & deux lignes (par exemple sur la ligne 13 qui contient 2 lignes aller
ou 2 lignes retour).

Plusieurs incohérences ont également été corrigées dans les données :

— Le fichier routes.txt ne permettait pas toujours de bien identifier les lignes aller et retour. En effet,
pour certaines “routes” (par exemple : ligne 13 de Chétillon-Montrouge & Saint-Denis/Les Courtilles),
certains départs étaient identifiés comme partant du terminus opposé. Cela devrait normalement étre
impossible puisque la “route” permet d’identifier la direction. Ce probléme affecte les lignes 1, 4, 7, 7B
et 13 : un travail manuel sur les bases de données a donc été réalisé pour identifier correctement les
lignes aller et retour.

— Certaines “routes” de la base de données ne correspondent pas a la réalité du réseau du métro
parisien. C’est le cas d’une des routes de la ligne 10 “BOULOGNE - PONT DE SAINT CLOUD <->
GARE D’AUSTERLITZ) - Aller” qui partirait de 'arrét Porte d’Auteuil pour ensuite aller a 1’arrét
Michel-Ange Molitor et continuer direction Gare D’Austerlitz (alors que depuis Porte d’Auteuil la seule
direction possible est Boulogne). Cette “route” n’a alors pas été considérée dans notre algorithme.

Pour simplifier le chargement des données en C++4, nous avons pré-traité les données via le logiciel statistique

@R:

— Pour chaque ligne de métro nous avons créé un dossier avec :

— Le fichier stops.txt dans lequel nous avons enlevé les accents (permet de créer ’ensemble des
arréts) ? ;

— Un fichier par “route” contenant ’ensemble des arréts de maniere ordonnée ainsi que le nom de la
route (Ex : CHATEAU DE VINCENNES <-> LA DEFENSE - Aller) , ce qui permet d’identifier
les arréts traversés par une ligne ainsi que l'ordre de passage.

— Deux matrices carrées ayant autant de colonnes et de lignes que d’identifiants d’arréts :

— voisins_type.txt : la coordonnée (i,j) vaut -1 si les deux arréts ne sont pas directement connectés,
0 si les deux arréts sont voisins et sur une méme ligne et 1 si les deux arréts sont connectés mais
sur deux lignes différentes (par exemple entre la ligne 4 et la ligne 13 & Parrét Montparnasse).

— voisins.txt : la coordonnée (i,j) correspond au temps nécessaire pour aller directement l'arrét i &
Parrét j. Avec une valeur égale a -1 s’il n’y a pas de correspondance directe possible et a 0 si les
deux arréts en fait “les mémes” (i.e. : ce sont des arréts qui ont le méme nom et le méme numéro
de ligne, cf. plus haut).

Les fichiers utilisés dans I'implémentation C++ sont disponibles sous https://github.com/AQLT /Metro__
Cpp/tree/master /Data%20projet.

2. le logiciel Code::Blocks utilisé sur les postes Windows de I’Ensae géneére en effet des problémes d’encodage, ce qui ne
permet pas par exemple d’afficher correctement les caractéres accentués.

https://github.com/AQLT/Metro_Cpp/tree/master/Data%20projet
https://github.com/AQLT/Metro_Cpp/tree/master/Data%20projet

4 Description des classes

Nous avons cherché a rendre 'implémentation de ce projet C++ la plus modulable possible en séparant
notamment les classes relatives a ’algorithme du plus court chemin de celles relatives a I'architecture du
réseau de métro parisien. Nous avons créé huit classes pouvant étre rassemblées en quatre groupes :

1. Les classes liées a la représentation des données du métro parisien. Il s’agit des classes Arret, Ligne
et Metro.

2. Les classes liées a 'algorithme du plus court chemin. Il s’agit des classes Node, Edge et Graphe.
3. Une classe permettant de faire le lien entre les données et 1’algorithme. 11 s’agit de la classe Itineraire.

4. Une classe générant 'Interface Homme-Machine. 11 s’agit de la classe IHM.

La figure 2 décrit les relations entre toutes ces classes. Elle reprend un certain nombre de conventions d’un
diagramme de classe en UML (objets de type public préfixés d'un “+” et ceux de type privé d’un “-”) sans

pour autant respecter toutes ses normes. Par exemple, les constructeurs ne figurent pas sur ce schéma®.

Des informations supplémentaires sur les méthodes mobilisées dans chaque classe sont disponibles dans le
code du projet.

4.1 Classes liées au réseau de métro parisien

A partir des données décrites dans la section 3, nous avons créé quatre classes :

1. La classe Arret est la classe qui représente un arrét de métro tel que défini dans la base de données de
la RATP : il dépend donc du numéro de la ligne ainsi que de sa direction. Il y a donc par exemple
deux objets Arret associés a larrét “Gaité” (un qui correspond a l'arrét Gaité sur la ligne 13 direction
Chatillon-Montrouge et un qui correspond & larrét Gaité sur la ligne 13 direction Saint-Denis/Les
Courtilles) et quatre objets Arret associés & arrét Denfert-Rochereau (deux sur la ligne 4 et deux sur
la ligne 5). Chaque arrét peut étre associé & un ou plusieurs objets Ligne.

2. La classe Ligne représente un ensemble ordonné d’objets Arret associés & une méme ligne (méme
numéro de ligne mais également méme direction). Ainsi, pour la ligne 4 il y a deux objets Ligne
qui correspondent au chemin de la ligne 4 direction Mairie de Montrouge et au chemin de la ligne 4
direction Porte de Clignancourt. De la méme facon, pour la ligne 13, il y a quatre objets Ligne.

3. La classe Metro est la classe qui synthétise le réseau de métro a Paris : elle contient ’ensemble des
objets Arret et 'ensemble des objets Ligne.

4.2 Classes liées a P’algorithme du plus court chemin

Trois classes ont été créées pour implémenter 1'algorithme de Dijkstra :

1. La classe Node est la classe qui représente un sommet (au sens de la théorie des graphes). Chaque
sommet est associé & un identifiant (qui correspond & un identifiant d’un Arret) et posséde plusieurs
parametres qui seront actualisés pendant ’algorithme de Dijkstra (voir section 5).

2. La classe Edge est la classe qui représente une aréte. C’est-a-dire qu'un Edge représente un lien orienté
d’un Node 1 vers un Node 2 avec la distance entre ces deux objets qui vaut :

— soit le temps de correspondance/temps de trajet entre deux arréts si 'on souhaite calculer U'itinéraire
le plus court

— soit la valeur de I'indicatrice d’étre sur la méme ligne si ’on souhaite calculer I'itinéraire avec le moins
de correspondances.

3. La classe Graphe est la classe qui synthétise le réseau du c6té algorithmique : elle contient ’ensemble
des Node et des Edge et permet de calculer le plus court chemin.

3. a ’exception d’un des constructeurs de la classe Itineraire qui met en évidence le lien d’Itineraire avec non seulement le
réseau de métro (Metro, Arret) mais également ’algorithme (Node)

IHM
-hConsole
-activerCouleur
-colorerEcran(int code_couleur)

+choixTypeltineraire()

+quitter()

+choixDepartArrivee(metro : Metro)

HANDLE
vector<string>
bool

void

bool

+afficherltineraire(itineraire : Itineraire) void

bool

-nodes vector<Node*>
-edges vector<Edge*>
-adjacentRemainingNodes(node : Node*) vector<Node*>*
-initialiserNodes() void
-importerNodes(chemin : string) void
-importerEdges(chemin : string, chemin_changement : string) void
-extractSmallest(&nodes : vector<Node*>, minChangement : bool) Node*
-contains(&nodes : vector<Node*>, node : Node*) bool
-calculerDistance(nodel : Node*, node2 : Node*, minChangement : bool) int
+dijkstras(entree : string, sortie : string, minChangement : bool) Node*
-getIndiceFromNode(identifiant : string, les_noeuds : vector<Node*>) int

-arretsItineraire
-tempsTotal

Itineraire

+creerltineraireSimplifie()
+creerNbArretsSimplifie()

vector<Arret*>
int

+Itineraire(destination : Node*, metro : Metro) Itineraire

vector<Arret*>
vector<int>

-arretsMetro

-lignesMetro

+importerDonnees(wd : string) void
+getArret(idArret : int) Arret®
+getLigne(route_id : int) Ligne*
-setArretsMetro(arret : Arret*) void

-importerToutesLignesTxt(wd : string) void
-importerTousStopTxt(wd : string) void
-importerStopTxt(path_fichier : string) void
-importerLigneTxt(path_fichier : string) bool

vector<Arret*>
vector<Ligne*>

-idLigne int
-numero_ligne string
-nom_trajet string

-couleur string
-direction string
-arretsLigne vector<Arret*>

+setArretsLigne(arret : Arret*) void

-idArret int
-nom string
-adresse string
-stop_lon float
-stop_lat float
-lignesArret

+setLignesArret(ligne : Ligne*) void
+memeLigne (arret : Arret*) bool
+memeArret (arret : Arret*) bool

vector<Ligne*>

-calculerDirection(arret : Arret*) vector<string>

Métro

+nodel Node*
+node2 Node*
-distanceCourtChemin int
-distanceMinChangement int
+connects(nodel : Node*, node2 : Node*) bool
+getDistance(minChangement : bool) int

-idNode int
-distanceFromStartCourtChemin int
-distanceFromStartMinChangement int
+previous Node*
+setDistanceFromStart(dist : int, minChangement : bool) void
+getDi FromStart(minCh : bool) int
-+initialiserNode() void
Algorithme

FIGURE 2: Liens entre les classes du projet
Note de lecture : Les objets de type public sont préfixés d’un "+" et ceux de type privé d’un
pas sur ce schéma, a ’exception d’un des constructeurs d’Itineraire.

"-". Les constructeurs ne figurent

4.3 Classe faisant le lien entre I’algorithme et les données

La classe Itineraire permet de faire le lien entre les données et le résultat de l'algorithme du plus court
chemin. Son constructeur utilise le Node d’arrivée et le Metro pour :

— retracer I’ensemble des Node parcourus dans le plus court chemin et en déduire ’ensemble des Arret
parcourus durant l'itinéraire ;
— calculer le temps nécessaire pour effectuer le trajet.

Elle fournit également quelques fonctions pour faciliter ’affichage du résultat par I’THM.

4.4 Classe générant I'Interface Homme-Machine

Une classe IHM a été créée pour gérer l'interface homme-machine. Elle contient quatre grandes fonctionnalités
qui correspondent a un découpage de 'affichage du menu en quatre parties :

— choixDepartArrivee() qui, a partir d'un objet Metro, permet a l'utilisateur de choisir sa station de
métro de départ puis d’arrivée ;

— afficherItineraire() qui, a partir d’'un objet Itineraire, récupére les principales informations a
afficher a l'utilisateur concernant son itinéraire (station de départ, d’arrivée, correspondances, temps
de trajet...);

— choixTypeltineraire() qui permet & 'utilisateur de choisir un type d’itinéraire (plus court chemin
ou le moins de correspondances)

— quitter() qui permet a l'utilisateur de quitter I’application.

5 L’algorithme de Dijkstra

L’algorithme de Dijkstra permet de trouver le chemin le plus court entre deux sommets d’un graphe.

Par simplification, 1’algorithme est ci-dessous présenté grace a un exemple fictif, qui fait également référence
aux , parametres et objets utilisés dans notre code.

1. En entrée, nous partons d’un graphe (Graphe) composé de sommets (Node) reliés par des arétes (Edge)

auxquelles on associe une distance.
;& 2
3
2

4
4 6
3
'~
Remarque : Dans ’exemple choisi ici, le graphe n’est pas orienté : si le sommet A est relié au sommet B, cela
implique que B est aussi relié a A et la distance de A vers B est égale a celle de B vers A. Dans les données de

la RATP que nous utilisons, le graphe est, lui, orienté. Toutefois, I’algorithme fonctionne de la méme fagon
dans ce cadre.

2. Choisir un sommet de départ. Lui attribuer un attribut de distance (Node.distanceFromStart) égal
a 0. Attribuer une valeur infinie a distanceFromStart pour tous les autres sommets.

° o
W™,/ =0
. 3

On s’intéresse tout d’abord au sommet le plus a gauche coloré en noir.

10

3. Pour tous les sommets adjacents a ce sommet de départ, actualiser le distanceFromStart du sommet
avec la valeur égale a la distance entre le sommet de départ et ce sommet. Pour chaque nouveau
sommet parcouru, on enregistre le sommet précédemment parcouru (Node.previous) afin de pouvoir,
in fine, retracer 'itinéraire parcouru.

i ~§
\‘ ~~
~

/@5(\‘/

Ici on actualise donc la valeur du distanceFromStart des deux sommets voisins du
sommet de départ da la valeur de 4. Le Node.previous de ces deuz voisins est égal au
sommet de départ.

4. Choisir un « sommet voisin » (nous allons voir en étape 6 comment précisément le choisir). Sommer
ensuite la valeur de la distanceFromStart du « sommet précédent » a la distance entre ce « sommet
précédent » et le « sommet voisin » (cette somme vaut dist =). Si 'ancienne
distanceFromStart associée au « sommet voisin » est supérieure a « dist » alors on la modifie a
« dist », sinon on la laisse inchangée. Puis, on passe au sommet suivant.

o F—.
\@5(i

\
442=6>14

Ici, on s’intéresse par exemple dans un deuzieme temps au sommet en bas a gauche
puis dans un troisiéme temps a son voisin de droite. On laisse la valeur de 4 d ce
voisin de droite car 4+2=6 > 4.

5. Continuer & parcourir le graphe. A chaque itération, identifier tout d’abord les voisins restant &
parcourir () et choisir le sommet non visité pour lequel la distanceFromStart

est la plus petite ().

4+3

441

En troisieme étape, on calcule les distanceFromStart de tous les voisins du sommet
central non parcourus. Puis en quatriéme étape, nous étudions le sommet (5) avant
les sommets (7) et (10) (5 < 7 < 10).

6. Continuer & parcourir le graphe.

// 6 "
\ /°"~~ 03
2 B R

Le distanceFromStart du sommet le plus a droite est alors mis a jour deuz fois.

7. Enregistrer les chemins parcourus a chaque étape et répéter jusqu’a ce que toutes les arétes soient
visitées *. Il est alors possible en choisissant un sommet d’arrivée de retracer le chemin le plus court a
parcourir et les distances parcourues entre chaque sommet.

4. On pourrait spécialiser ’algorithme en arrétant de parcourir le graphe une fois le sommet d’arrivée atteint. Toutefois, le
temps de calcul étant relativement faible, le gain serait alors limité.

12

L’algorithme se termine : tous les sommets sont parcourus.

L’implémentation choisie dans le cadre de ce projet reprend ces différentes étapes. Il ne s’agit pas de la
méthode la plus optimale en termes de temps de calcul mais, en revanche, de la méthode la plus lisible (classes
et fonctions plus facilement compréhensibles). Par ailleurs, du fait de la petite taille du graphe utilisé dans le
projet, le gain qui découlerait d’une optimisation du temps de calcul serait négligeable.

6 Pour conclure et aller plus loin

Nous avons tous deux beaucoup apprécié travailler sur ce projet. Nous avions découvert la programmation
objet avec Java il y a quelques années mais avons peu eu l'occasion de mobiliser ces connaissances depuis.
Ce projet a donc été 'occasion de consolider ces acquis. Par ailleurs, I'objectif du projet nous a semblé tres
complet puisqu’il nous a permis de travailler a la fois sur un algorithme, une Interface Homme-Machine
et un diagramme de classes relativement riche.

Toute bonne chose ayant une fin, voici donc quelques pistes qui pourraient permettre d’aller plus loin :

— Le format matriciel utilisé pour stocker les temps de correspondance et de trajet n’est pas optimal. En
effet, ce format conduit a lire des informations inutiles : celles qui concernent les stations de métro
non reliées, qui sont nombreuses (matrice creuse). De plus, pour charger les deux types de distance,
deux matrices sont alors parcourues. Le temps de chargement des données pourrait étre amélioré de
fagon conséquente en créant un fichier dont chaque ligne contiendrait deux identifiants d’arréts et les
deux distances qui les séparent (le plus court chemin et le moins de correspondance).

— Nous n’avons pas pris en compte les horaires des métros dans ce projet. C’est par exemple ce qui
explique que nous n’avons pas intégré les lignes de RER. Une fagon de gérer I’heure (et la date) de
passage des métros serait de rajouter dans la classe Edge un vecteur contenant I’ensemble des horaires
de passage. Pendant la mise a jour des distances des Node de l’algorithme, il faut alors :

1. mettre a jour la valeur de Node.distanceFromStart comme étant égale a la somme entre le temps
de correspondance et la différence entre 'horaire du prochain passage et I’horaire actuel ;

2. incrémenter 'horaire actuel de cette somme.

— Lorsque deux itinéraires ont un temps de trajet “proche” (par exemple quand le temps de trajet est
inférieur & 2 minutes), on pourrait proposer les deux possibilités a l'utilisateur.

D’autres informations pourraient étre utilisées pour proposer d’autres fonctionnalités. Par exemples les
coordonnées GPS (disponibles dans la classe Arret) pourraient étre utilisées pour :

— Calculer l'itinéraire en prenant en compte le temps de marche nécessaire pour aller a la station de
métro la plus proche.

— Prendre en compte le réseau de bus, de RER et de tramways.

— Ajouter d’autres types d’itinéraires : accessibles aux personnes en situation de handicap, ou encore
passant par des toilettes publiques de la RATP (https://dataratp.opendatasoft.com/explore/dataset/
sanitaires-reseau-ratp) !

13

https://dataratp.opendatasoft.com/explore/dataset/sanitaires-reseau-ratp
https://dataratp.opendatasoft.com/explore/dataset/sanitaires-reseau-ratp

Lignes de

@ . ® légwde

en direction anlieve, O t
Paris m{;‘;u:a;vfmh, — D

 ne sont pas valables

RaTP C=0 O O Correspondances

métro

o [DO O DO

de cette limite,

[Tounemer

Les
13 courtittes T
e v

@ Comm D Findelignes

113 saint-Denis -

cim i
deKDenms _psstbnaine _Comonautes "6 ot Htelde Vil
s P T R TR

Epinay-sur-seine (T)(11) @B Roisyeus
D

Aéropor
Charles de Gaul

B nene Parc

Université " des Expositions
s courene Aulnay
 oe s Eoimee (i sous- Bois

iy Tt b
[o o, (D)D) RS e et S
Asnieres Les Grésillons La Courneuve stade Géo i Le Bourget Mitry - Clay
P e Liison urine oM v aitry - Claye (5)
* omproiecuy QUAUGROUtes [| onettes e @ © Rty
urneuve, rice e Freinville.
pont Gabriel Péri X @l St B
D@eBerons Shioie N
Mairie d‘AuberviHiers N Gaston Roulaud B
Jeagene, LaGarenne Asnires de Clichy? Aubervilliers Seorrm
Ko Colombes sureine 1 Garibaldi Fromt v Auberglrs o v Bondy(T)
. pulaire’ Pantin N bt
Chateboun Clichy oot e y
S A 5t seciommanri Og | QuatrCheningifp s © P viasso
Pont de Levalloi Epnetes L RS e
I e Lol € Porte e licny 07tz B simplon® o O e
Do "é 'Saintouen utes, N\ Warcadet M2y “Bobigny-Pantin
o) i
Lrupons rochan ek Lamarck rin* Y Poissonniers’ Bt et oVl A 5aymond Queneau

4 LaDéfense
Grande Arche

Esplanade,
de La Défense

Pont de Neuilly*

o puteaun

Funicusive e~ | Chateau
Montmarve § Rouge
Barbes

:‘nm d'A[::I!res
arguerite Long
Percire gy

Ola Fourche

Abbesses

Pereire - Levallois O~ Blanche

w8 chel
Gt Gullmly

)
&)

Crimée* “Egise de pantin’®:

Riquet

Pigale™ Anvers o ——

Gare du Nord|

Place
de Clichy

L\ége Saint-Georges §

S

loche

B Mt D)
= Touman(®

Danube “St-Gervais -

" Fobitoene

o) Mairie des Lilas*

Botzaris
L bl hi
g oeplons @ Esﬂenne Notre-Dame (hateas §colonel
GoLorette* Lander) L chaument
RmreE) orette’ Poissonnidre® Fabien’
~ vore il o 0 (8158 porteces Lias
Beivédere. Neuilly—Porte Maillot, () Haussmann Pyrénées Jourdain Place Télégraphe
SaintLazare® () Sainetazare Le Peletier Chatequ Belevile des Fétes*
Argentine® Saint-Augustin Chaussée dead Bonsergent Saint-Fargeau « ®Adlenne
d'Antin Richelieu Strasbours Couronnes Tl
epom . ® " La Fayette Drouot* SaintDens
Avenue Foch Dauphine’ Etolle Miromesni e} cllas i sseverne
Saint-Philippe
dwRotle Opérat o Srands, Méniimontant PelePOTt
<uenes George V' oulevards
i chor®
Victor Hugo™/ Kiéber X Quatre Septembre
Franklin 3=
D. Roosevelt O Bourse _ Sentier o o - oﬂalllenl
e ambetta’
Boissiere ama, /s Saint-Maur® e Bagnolet
airie
MarceauX Elys Palais Royal int ise § Philippe, de Montreuil
Rue o Clemencens Nconcorde "Wusce du Louvre ek SaintAmbroise [auguste* e
Avenue | de 12 Pompe éna i Rivoli Rt e it .
Henri Martin Trocadé H Lenoir foltaire’ Croix de Chavaux’
rocadéro Pont Tuileries Pont Neuf Chatelet Chemi Alexandre
delAlma; Invalides® Musée d'Orsay Sl Bréguet Dumas ‘ Robespierre
5 7 Lssebiee natona aa savin Charonne Maraichers —Porte de Montreuil
L2 Muette® La Tour ssemblée Nationale Pont Marie Bastille® Rue '™, \g Avron Marne-lavallée*
1 - (‘1(3 Passy. Maubourg St-Michel des Boulets 0]
Boulainvilliers Notre-Dame * @/ Buzgnal =
Champ de Mars e saint Ledru-Rollin
ot Rue Germam StMichel Sully Faidherbe D@ vincemnes
Bir-Hakeim cole duBac des-Prés Cluny Morland Chaligny 1 O
Ranelagh Avenue Militaire £ 0 La Sorbonne NoB)
du Pdt Ker aint o
u Pt kenngll Dupleix Francojs Sevres Mabillon Odéon* F ! Porte de| . StMandé*
La Motte Xavier® Babylone*(d) . utuali 'O Reuilly-Diderot Vingennes* Boissy-St-Léger*
Picquet Vaneau § saint-Sulpice Cardinal Quai de icpus, e
Jasmin Grenelle e Luxembourg Lemoine |3 Rapée Montgallet Bérault
s ions Michel Erie 20 St-Placide™] Gare Bel-Air* 1 G annest
t d H fr— incennes’
Anee, e 0 Cambronne , Ségur_ODurock > 1o Notre-Dame Jussieu*® deLyon s
Auteuil®_ Aol des-Champs Daumesnil*O, Michel
e O O- aries) Montparnasse, Place Bi
@Auteuir® Javel Micheis* {§ Commerce Falguitre o Bienvenie™ Monge
Mirabeau André Sevres Vavin Port-Royal 10
i cuioen 5 Citroén Lecourbe gg:sb\s:‘w"' Dugommier -
ean Jaures “Michel] Chardon Félix Faure - CliEReEs
Ange | Lagache D oryeus Les
Molitor Gobelins
- Exelmans . Rochereau® A Quai Cour Olporte de Charenton
oulogne e
i Pont © _du Garigliano /" Boucicaut* Saint-Jacques fiace OO dela Garel & —
5o de StCloud* | porte (o] Corvisart | | atie Chevaleret e
de St-Cloud Pernety Duvemet w " Bibliotheque (f
Glaciere Nationale* (B ik @GS
Marcel Sembat* Tolbiac Olympiades () @—— L] 7
% Maison oo
Billancourt 8 Porte de Versailles Porte ire* Blanche Porte Porte Porte v Ecole Vétérinaire
L f & o] Blporte ce vanves aonéans of 1aneheTO il de Choisy gy £ .0 cole Vétérinate
Val de Se e e - o o Jean Montsour Stde | poteme surSeine Maisons-Alfort-Stade
Q) Fi et o il whes | O ; -
Plateau de Vanves Mairie Gentilly Bicétre Pierre et Marie Alfortville m\mm&n
Montrouge’ N urie
Malakoff Villejuif . X .
Rue Eti Dolet* Léo Lagrange Mairie d'tvry (7 vitry Créteil- L'Echat
ra—g yu e Hienne Dot (g i L"i . Surdeine
ey Le vert Créteil-Université
surseine. . Paul Vaillant-Couturier i
[y (6)Q| 43 chatiton - Montrouge ‘Arcueil-Cachan de Maisons ;
Y 7 Villejuif - Louis Aragon® Les Ardoines Créteil-Préfecture
Viroflay Chaville- Vel Ehed Bagneux Créteil-Pompadour
Rive Gauche i feoen * Choisy-le-Roi " 2
» K Bourg la-Reine’ La Fraternelle B
Versaines (1 Onision ek Y = =
e P scton e o)
\ o g B eopon o 4
P J') 2, “i,ﬁ & ,»\ "é& S Massy - Palaiseau® o Orly e
st.q-.gnun & e’ LG & Saint-Rémy 1,2,3 ol Versailles - Chantiers
squen . v S YO @ameons TG e © (Dmen

FI1GURE 3: Plan général du

14

réseau de transport parisien (hors bus)

q1

(2
'e'(""‘"
\‘3
S)
\o‘\ > . \)
s ’L‘ 3\ \\e’ (_e'b
e > 0‘@ ‘» \\(\ W) seqe\‘ \e((‘
3 N%(\ ‘e" - ?~°° ées O
c«é (,eo‘%e o\\“ 5
« w“‘“ &
b o o® e
g il
@e s ‘ ‘ O o
o0 (QF) ™3 ‘ 7
®ee |
(QOF
B
K
0 \)\\z
% &G
o ao‘\o' “\9— e
<e < o
‘ — W e ’
?' 6 ® PN W o * o
\C
8o o—s all
o . os |
13
R
o o o y
X
o o B
Il ?k‘z
o & O
[l
®O

R0

Gare du Nord

91

X
2 .
O A0 xe N
e A o o e 2% < o
& o e & A& AN e o
N o o2 2% W o o) & et < 2) e
W e e © e 3 N P ¢ < o X oo PRSI Gy @ ge
o X e e o e N @ & S S o 6 o N « o eV S @ 5
QoF e Wt W W o o od® o e e e [PR R o ?~“ & @ of
O O O O @ O
]
i ©e OOBD G 7 s ®0 ®d oy ©0 OF OO0 b
® Direction Levlos: 9
®0 % ©®.. @®umur o
@ 3ois @D EE e OO, OD T DDA
@‘g,@" < P oLzt @iy @iy B,
S,&\‘\’ﬁ‘ ?e\\?—" &> St B brihtonas B Shisens thion e e vincamnes’
R recdesties s . e e vincemnes
3 8 i St inde e,

Pte de Clignancourt

pont de Sévres
Montrouge 9

Montreuil

Bobigny Boulogne
5) place d'atie 0 core stz

R
ot® X © 5 o
‘\\e o\"&‘ R oM OQO\ r,'?‘é . e“\,e o
e o N \ o P o o
C\ Xa e
A /? $°\; * 90‘ &"\‘@‘ a“ég‘o & 6“)«9 ‘\e@"i\%\\e o \3\"‘@ ‘«\ ?\3& %‘«b < 25 000\,4
& x2?® © e e xe% oS RN X o® Nd W L ot® e N\ SR L
s@ e @ @ (@ @\ o N ™ e o™ v&* oe“ WO T gof
T T T T T T T T T
®e (©f2) (hlb. Wea ®wee ®O ®aa @0 ®eOd é. (b. é)i%;
m@ 13
@O0 ®DO® @O ®®
é LE | GER
REE & Alorgoo=]
—_
\]
“\,
O 0@ oo & & o
o Q’A“ Q¥ Q'A“ e 8 $0\5 % oo™ o % oo <
e & 8 =2 N e o oo o v X A\
w&%‘\p 0‘0\%3*((‘ e%\\e,?’ \)‘oe(\ ?0"@ 0“‘6\ \}“«\\ \Q\\(oﬁ ‘;@\\% p z‘e'é p ’5‘7‘6 w(‘o‘\)e $é9o“ ‘oe“(@ @(ﬁa‘ ‘6‘%& es"\\
9 @ o o 9
® ve® ©Ow ®0a ©o® ©e @
g@@o 9 %
EHEmK K&

81

P s\“e‘
(’()‘o(.a&
?assq
®
9
$\“<\ y
ég oV Q\¢\$ "‘ o
o
(\e\\?-
T
W@ (,aomomz
0
s‘z«e,sr\m,o 0%
?%\e
Q ﬂ‘o‘\v
®@ P ﬁe(\
@ 00 u\g‘\‘ Q\i\‘\z\
1 R
: y 5%%\\
N[E ®o o2 (e‘w~ aza\\
@ o sm\&\z R
o © ﬂ(é c;\wt
Q0% & ybus Cow\%‘\
o
O e g ® ?\&z&\w\,\e
6@ (.om\ z‘\O\\ o
(‘““\é @ " &a&\o g
\w ¢ et z\z‘e
sa\'\oq,‘
1% Q\\-,\A \a(»\e
@O o°\\\s ?’\'Ao %z‘q
5 a\a o o0 o
® e} .
® (mo,ée\'%\ @@ o\sg,o G
Q (\‘\AQ : 0 @2"(\\
® ?o\ss 1) :
@o s TN il ® o N
s g\ex'z erey 8
) Lo hw(w. ?\(,Q\\‘;
gmssbcéwm
@ g&w
° ®9 ?sms 6 g
& ¢ Q it 3\:}\ 2 A\) . N 2)
®0 O % .
@ a ?oo&$z°
O\"m\zx
1 0
8500 P,
° A\
\\\ss\e
@ ¢
) o
e\\‘\s
8\&36\\3\
® <0 WO
06 ga\sox%\a(\c‘\ o
?m\z ‘\v&\a
‘?o(ke
Aec\\ém
?om W
\,gﬂa‘\\(\“ﬁ\céxxe ®
\l\\\a\“
\&o\?
“\\\a\\\ \\N
=

61

o ° @D B2 e @@ stmeys @B S o
s te Dauphine ouis Blanc aint-Lazare
@ 7o <5 > _ o @ g @ el e, @ e
> & Na 0 o s 8 2 D@ digzsemesers ;...:';,;::i;m
> 2 0 & 0 e des Lias pont de sivres Pont de Bezons R S s
O O e 35 Eambedts C pontde dezons, e e
e e de Clignancour ulogne nt du Garigliano omylavite
®a d0s et O™ D B R ons g g @™
— O B) B (11 e () e s, [
®o 6 i Aise e
&S
Ne . W
0% o & o
8 o O <O oy o e o5
& o« & e g o & & B 0% et A
@ e Sl W o = 8 ‘o \e\‘a‘w““ ® o i g c“‘@g z"“e B N o o0 \\e & gt & (“\a‘g o & \é‘\ ey p.\“" p.\‘°‘ .gc‘"
g o W
o \(\ ¢ \ia & g \\A o Q_\e\ > (\s o 50 ““\\ o & W Qe e PCAR\g ,@,’b o OGRS s & z‘\ o 2 ‘,o ‘,o e\“w &
O got© (t\‘* @6\‘“ PSRN T T SR e @C“ (,a‘\ oo q® @Q QA 7 e ,,\é e ‘p“ W oot ?0(W e s ¢a‘:‘ W @ el cb‘
O O O O O O O OO
@ ® a0 3 1 7 9 9 5 165 @ 1 @ 6 ® d) (S]]
+ O 5 @ s
0] 10} 9

@i"ﬁe

d
o s R
o o™ Y &
. " S o -
e > 2° o e
@y ?0‘& *e\@ _‘)\,)P‘ . \‘P“") X e\\“" o N
o W & o oo ¥ . ! S
R o v@‘\e\\}“‘\«- 2&,\3 2° 9‘3«_2“ o‘?~°° Qe"’ o A2
. . RN 2 X g - |
O N e = &\\\\\Q es\\\\ g’\\s\\“ \\(\a“ o o g N
. o sa.\‘\‘ ‘K\‘o“‘ \“.@“ “‘ela séevs \\,0‘° e\\\z’*" \,qe\\a A0
B @ ' N o :
y o ‘L-\CQP' s o v°“"’ o £ it 3
e o 20 o o
<& o a\o"’“ > oS,
PR 02 o® & B
o que " @ 2
ot o oot

O
O O
OO0
O
Q==Q=—=0

0¢

$ ®@
0 ‘
®G10 Boulogne. @ & : ‘ ‘
0" o0 00 |
b D B0 O Ve ‘
80 ©®0® ®O6 VE
P 'o 8" |
®@0® o
o '@\;\ S
e (e (o2
v?‘o w @ g
Y & o g
—; e «d POl
A c‘\e\, \'\‘0‘ . = \'N?-\ .&‘\qﬁ‘r‘ \;eﬁ’»‘“ -@R\L
W c\@&\;@"\‘ o o we® ﬁ“’t@‘e\\e o o
O ‘ > " o\“og, “ea“ s,‘b@ o Qoo «A\ﬁ
; RO o Vw‘\\“’ oo * "»& “
wee T o (,\\5“* & 8\‘@\\' >
(OF] ®e o . - -
®0 4
®@

™) 0 core nusterice ™®®

1¢

©O®

e
2 :
WO
™a
& o
Go‘\c?;t&,mﬁ
o J\\\e
@ -l
S ?\“é(\te
s : \0\“&\“ "(&\9"
3 -
¢ 39\‘2
T ot s\:\\’s
5 $ s
T
®3-
o
@ o
2 o® § o‘\‘(\e‘s
“ *00‘6\0 ‘/?0\5 . \\\(,o\\"&
s ‘w‘@ée d’\d&\“ Vca\s\a
¥ \;‘\\a“- 25 -]
@ “,,ww‘ Ne o &‘\p‘ Q&O«
s : P G 2% e
%\0 \?"0 86
: W o e -
H o a]
I & ‘t@&,‘\e e 3{\0‘\3
- Eun;;:m | co“bo‘ ‘(\‘o\ée
@ Mantmartre | :
I — e so\ibw R o w«\\’s
& — @ v&eé ‘ec,/ﬁ"’ °e,s—"
KE 18 ;) ?&“‘\es ’Ge'oa ’ “‘a(’se
' W e .
: : WG =
i I s ?a\%\;\ ‘e\“ R
7 ‘ P qe\"’“@\ Q;\‘a«\
— (41 E) : & Co‘\“e‘\
™M@
QL |
‘Dz“\s o
o wwwﬁ“"ﬁ\ u
ovw \\3‘\\:25\'0‘@ o
= . PR o o
_esN.“ Lo ‘ : @**
. - :
° M«wzow © of .
.‘ ?e“ge,(.\“\\,:w“‘ o el \3"2“(‘
:mm P, ;‘e@ ‘ﬂ_\“&ﬁ‘g ®
\‘°®z 9»* >
W (,w“‘z\e&“@ a\ées '9' “
’ o qﬁe““e ‘o\‘&@\ 2
®a ° e o«oc S
. g
S
& : :“ ?e‘“,d v\d\@“& &«A\\‘l” —
. .
g ®® ° .w w\;\&yz
M & ¢ .

(&

S‘é\(\’c\zm‘e
®O
Sg G2k ﬁ\aée\e\oe
QF 112 e O
0@ C‘(\%&e,\e&
®
W)
® é ® @ 66\\\0(\
;
B . %e(o;
oL . |
- (? 6 o Sz'\«c%\'\\\
s \‘0\.\0&%\‘?&&%
o m\gdxs 3
hO
e)

	Introduction
	Le programme
	Prise en main
	Démonstration

	Description des données
	Description des données à disposition
	Difficultés et solutions adoptées

	Description des classes
	Classes liées au réseau de métro parisien
	Classes liées à l'algorithme du plus court chemin
	Classe faisant le lien entre l'algorithme et les données
	Classe générant l'Interface Homme-Machine

	L'algorithme de Dijkstra
	Pour conclure et aller plus loin
	Lignes de métro

