
Guessing the domain of a job from its description
Machine Learning for Natural Language Processing 2021

Kim Antunez
kim.antunez@ensae.fr

Alain Quartier-la-Tente
alain.quartierlatente@ensae.fr

Abstract

Using different NLP models (mainly LSTM and
CamemBERT) we predicted jobs’ domains using
job descriptions provided by French governmental
agencies.

1 Introduction: problem framing and
datasets

Pôle Emploi is the French governmental agency
which registers unemployed people, helps them
find jobs and provides them with financial aid. To
offer suitable jobs, they use a classification list of
jobs called the “ROME” nomenclature1.

For this project, we tried to answer to the
following research question: Using Natural
Language Processing modeling, is it possi-
ble to properly guess the domain of a job
simply by reading its description?

To answer this question, we used two datasets
provided by Pôle Emploi and web scraped addi-
tional information from Onisep (another govern-
mental agency which provides students, parents
and teachers information about jobs and training
courses)2. The final dataset is composed of 1 247
descriptions belonging to 14 different classes
(major domains)3.

To predict the different major domains, we split
the datasets into 2 sets (training and test sets) and
performed 9 models of Sequence Classification
on the training set using Pytorch (see section
2). Once fit, we evaluated the model on the test set

1A ROME code corresponds to a job and the 532 jobs of the
database are classified in 110 professional domains (“domaine
professionnel”) and 14 major domains (“grands domaines”).
Each job also contains many denominations (which are many
names which refers to the same ROME code).

2More details about the datasets and the methods are provided
in the .ipynb file in our github repository http://github.com/ARK
Ensae/JobDomainPrediction_NLP.

3Given the limited size of the database used, we only tried
here to guess the major domain classification (14 classes).

(unseen jobs and denominations) using F1 scores
per class.

2 Experiments Protocol : Embedding and
Modeling

To perform Sequence Classification, we used dif-
ferent models, briefly described below.

2.1 Model 1 = Baseline: SVM on word2vec
sentence-embeddings

For Model 1, we used pre-trained word-
embeddings obtained from a French corpus4

trained with a skip-gram word2vec approach and
an embedding of size 200. It has the drawback
to probably be a bit less performant than if we
trained it ourselves in the specific domain of jobs,
but we made this choice due to our few number of
observations. In this simple model, each sentence-
embedding is obtained by performing the average
of word-embeddings of all words in the sentence.
Finally, we use the supervised learning model
SVM to perform data classification.

2.2 Models 2 to 7 = LSTM (with and
without previous word-embedding)

For this second set of models, we used LSTMs,
artificial RNN architectures with feedback con-
nections allowing a contextual representation of
tokens. A LSTM uses an embedding layer. For
Models 2 and 3, this layer is initialized with ran-
dom weights trained simultaneously with back-
propagation as any other weights. Model 1 uses
fixed-length inputs whereas Model 2 accepts
variable-length descriptions of jobs and is more
performant (but increases the training time).

Models 4 and 5 are respectively the same as
Models 2 and 3 but we initialized the embedding
layer with the pretrained word2vec embedding
used for Model 1. For Models 6 and 7, we do
the same, but we freeze the updating of the word-
embedding weights during the training.

4Available at https://fauconnier.github.io. The model was
trained with the FrWac corpus of 1.6 billion of words.

http://github.com/ARKEnsae/JobDomainPrediction_NLP
http://github.com/ARKEnsae/JobDomainPrediction_NLP
https://fauconnier.github.io
https://wacky.sslmit.unibo.it/doku.php?id=corpora


We tried to improve the performance of Model
7 (best LSTM model) by tuning (Probst Philipp
and Boulesteix (2018)) learning rate which is
known to be one of its most crucial hyperparam-
eters (Greff Klaus and Jürgen (2016)). We ob-
served that the performance varies a lot, but our
initial hyperparameter were one of the best.

2.3 Models 8 and 9 = Fine-tuning the
pre-trained CamemBERT transformer

For our last models, we use the famous bidi-
rectional transformer BERT. The pre-trained
CamemBERT (French equivalent) model can
be easily fine-tuned with just one additional
output layer to create state-of-the-art mod-
els for a wide range of tasks, including
sequence classification. For that, we use
the BertForSequenceClassification
function which uses the model transformer with a
linear layer on top of the pooled output.

For Model 8, we used the same training and
tests sets as previous models. For Model 9, we
trained the model on the Onisep dataset and tested
it on the Pôle Emploi dataset to see if there is a
domain shift between the 2 datasets.

3 Results : Quantitative and Qualitative
Evaluation

To evaluate the different models quantitatively,
we used F1-scores per class and their global
weighted and macro values (table 1). Indeed, it is
more suitable than the accuracy when the dataset
is not balanced (like for us) and to account for the
weakness of our models in the classification of
some specific (and rare) classes.

Model 8 (CamemBERT) is the best model fol-
lowed by Model 7 (LSTM with frozen word2vec
word-embeddings). Surprisingly, the baseline
performs better than all the other LSTM mod-
els which means that using the words without
their contexts in the description can show pretty
good results in predicting the job domain. Further-
more, Model 9 shows also good results (figure 1)
which means that the model does not seem to be
very sensible to domain shift (descriptions from
Onisep versus from Pôle Emploi).

In the notebook, we also evaluated our models
qualitatively, giving some examples of good and
bad predictions of our models.

4 Conclusion and discussion

To conclude, both LSTM (Model 7) and Camem-
BERT (Model 8) seem to be efficient in guessing
the domain of a job from its description. Both
methods are sensible to the context of the words
in the descriptions, in contrast to our baseline, and
it seems to improve the results even if the baseline
was not that bad.

For the dataset we used, CamemBERT is the
most efficient in term of weighted F1 score and
Model 9 shows that it is still efficient even in
presence of domain shift. Indeed, CamemBERT
has the advantages of working at the sub-word
units using byte-pair-encoding and thus has no
Out-Of-Vocabulary problem. Thanks to the use
of attention mechanisms, CamemBERT can also
make some inputs more important than others;
and whereas vanilla LSTM only uses left context,
CamemBERT is bidirectional. However, it is also
important to look at the trade-off between per-
formance and complexity: our LSTM models
are much faster to run and sometimes the use of a
simpler model can be a good engineering option,
even if it is a bit less efficient.

In the future, it could be interesting to improve
the LSTM implementation we used, making it
bidirectional and adding attention mechanisms, as
raised in our NLP class. However, it could slow
down the process and we must keep in mind that
the recurrent nature of LSTM limits the possibil-
ity to scale the training process to more data:
we cannot parallelize LSTM easily whereas it is
easier with BERT’s transformers.

In addition to job descriptions, we could use
additional information to do some further ex-
perimentations and check if necessary diplomas
or conditions for exercising the activities are use-
ful to label the job’s domain. Using additional
datasets could also be interesting to improve the
training process and to be able to predict job’s
domain at a less aggregated level. We can think
of online CVs or LinkedIn job offers. However,
collecting such data without the consent of their
authors is more prone to ethical concerns than
using job descriptions produced by specialized
agencies and voluntarily put in open data.



Appendix

Macro avg Weighted avg
Model 1: Baseline 0.50 0.55
Model 2: LSTM (fixedL+RWE) 0.06 0.10
Model 3: LSTM (varL+RWE) 0.27 0.33
Model 4: LSTM (fixedL+W2V) 0.11 0.17
Model 5: LSTM (varL+ W2V) 0.36 0.40
Model 6: LSTM (fixedL+W2V+frozen) 0.11 0.14
Model 7: LSTM (varL+ W2V+frozen) 0.69 0.69
Model 8: CamemBERT 0.74 0.76
Model 9: CamemBERT with domain shift 0.57 0.62

Table 1: Macro and weighted F1 scores for our 9 models.
Note: The macro and weighted averages respectively correspond to the averages of F1 scores per class without and with considering
the proportion for each label in the dataset. fixedL = fixed-length inputs / varL = variable-length inputs / RWE = random initialization
of word-embeddings / W2V = word2vec word-embeddings / frozen = frozen word-embedding weights.

Figure 1: Confusion matrices for Models 8 (left) and 9 (right).

References
Koutnik Jan Steunebrink Bas R. Greff Klaus, Srivastava Rupesh K. and Schmidhuber Jürgen. 2016. Lstm: A search space

odyssey. ieee transactions on neural networks and learning systems. IEEE transactions on neural networks and learning
systems.

Bernd Bischl Probst Philipp and Anne-Laure Boulesteix. 2018. Tunability: Importance of hyperparameters of machine
learning algorithms. arXiv preprint arXiv:1802.09596.

https://towardsdatascience.com/multiclass-text-classification-using-lstm-in-pytorch-eac56baed8df.

https://jovian.ai/aakanksha-ns/lstm-multiclass-text-classification.

https://towardsdatascience.com/multi-class-text-classification-with-deep-learning-using-bert-b59ca2f5c613.

https://towardsdatascience.com/multiclass-text-classification-using-lstm-in-pytorch-eac56baed8df
https://jovian.ai/aakanksha-ns/lstm-multiclass-text-classification
https://towardsdatascience.com/multi-class-text-classification-with-deep-learning-using-bert-b59ca2f5c613

